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7 Comparison of Analytical and Finite-Element Models

7.1 INTRODUCTION

The finite element model was developed as an alternative to the simpler analytical model.

Comparisons were made to verify both models would produce similar results under similar

testing variables. This chapter explains the comparisons made and details the pros and cons

of each model.

7.2 APPLIED STRESS INTENSITY FACTOR COMPARISONS

The basis for both the analytical and F.E. model is the ability to predict the applied stress

intensity factor.  The applied stress intensity factor is the same whether gap elements are

used or not in a F.E. analysis.  Figure 7-1 demonstrates the applied stress intensity factor for

both maximum and minimum stress in the specimen with solid stiffeners, case 1.
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Figure 7-1: Kapp,max and Kapp,min for both finite element and analytical models, immediately

severed stiffeners.
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This plot depicts the assumption that the stiffeners are severed immediately once the crack

has reached them.  Only the maximum Kapp curves have been pointed out to prevent clutter

in the figure, but the type of line is held constant in the minimum Kapp curves.  Better

agreement between the analytical and finite element models is obtained if the net section

coefficient is not used in the analytical model.  This characteristic will be noted in many of

the comparisons.

Interpolation between intact and severed stiffeners is seen in Figure 7-2.  Here the results

shown in Figure 7-1 have merely included the assumption of equal growth rates in the

stiffener and the plate.
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Figure 7-2: Kapp,max and Kapp,min for both finite element and analytical models, stiffener

interpolation used.

These comparisons show that good duplication between the analytical and finite element

models exist without residual stresses included.
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7.3 RESIDUAL STRESS INTENSITY FACTOR COMPARISON

The next comparison made was that of the residual stress intensity factor.  The residual

stress intensity factor showed the most scatter between models.  Varied results were attained

between the models, and therefore a more in-depth study was made concerning the overall

effects on Ktotal.  Figure 7-3 shows the different curves that comprised the study.
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Figure 7-3: Kr for both finite element and analytical models.

The study included the following components:

1. The finite element Kr obtained using gap elements and upper bound residual stress.

2. The finite element Kr obtained without gap elements (Extrapolated from the gap element

analysis with upper bound residual stress).

3. Kr from an analytical model using a typical Faulkner residual stress determination.

4. Kr from analytical model using the same residual stress distribution input into the finite

element models (F.E. upper bound residual stress)
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5. Kr from an analytical model that matches Kr from number 2.  Iteration was used to

determine the residual stress distribution necessary in the analytical model to reproduce

the Kr derived in study point two.

Figure 7-3 has several characteristics that may be immediately observed.  First, Kr from

curve 1 never becomes negative.  This is because the gap elements were specified with an

initial gap of zero meters. Consequently, J remains zero in compressive residual stress

regions until sufficient external load is applied to separate the crack faces.

In the F.E. analysis without gap elements, curve 2, J values and subsequent Kr values were

determined by subtracting Kapp from Ktotal. Recall the criteria that, in order to perform this

extrapolation, the external load must at least match the opening load before Kr can be

obtained.   It is not clear why this Kr differs significantly from Kr in curve 1), and so both Kr

values were studied in their correlation with the analytical model.

Analytical modeling provided residual stress intensity factors that corresponded well within

the range suggested by both F.E. analyses.  When the residual stress distribution that was

created in the finite element analysis was used in the analytical model, a Kr resulted (Curve

4) that averaged both finite element analyses.  Increasing the residual compressive stresses

in the analytical model allowed curve 5 to be formulated.  Finally, curve 3 shows that Kr

obtained by using Faulkner’s residual stress distribution provides an average Kr curve that

emulates the gap element Kr quite well.  The Faulkner residual stress distribution is what

would normally be used in a standalone analytical model, where residual stress values are

not obtained in connection with F.E. modeling.  The excellent correlation with the finite

element Kr curves promotes its use as a simplification to the more complex F.E. modeling.
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7.4 TOTAL STRESS INTENSITY FACTOR COMPARISONS

Minute differences in Kr and Kapp between the models have been very acceptable in the

results presented so far.  The additive effects of these differences are seen in comparing Ktotal

for the various analyses.  Figure 7-4 plots each Ktotal curve for direct comparison.
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Figure 7-4: Ktotal for both finite element and analytical models.

(Analytical results do not include a finite width correction.)

No finite width correction was used in the analytical curves. Good agreement seems

consistent throughout the models plotted in Figure 7-4.  However, small variations in Ktotal

are cubed in the Paris Law, so it is important to correctly identify which curve is most

appropriate.  For example, curve 5 would predict cracking stop altogether at 545-mm while

the other models do not indicate this drastic a reduction in Ktotal.
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Degraded correlation is seen when the net section coefficient or other finite width correction

is used in the analytical model.  Figure 7-5 shows the increased Ktotal values in the analytical

model.
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 Figure 7-5: Ktotal for both finite element and analytical models.

(Finite width correction included in analytical models.)

7.5 STRESS INTENSITY FACTOR RANGE COMPARISONS

Comparing ∆K provides the most direct view of discrepancies between F.E. and analytical

modeling. The comparison is also the most significant because these values are cubed in the

Paris Law for crack growth prediction.  Two figures are put forth to demonstrate the results:

Figure 7-6 plots ∆Kapp and Figure 7-7 plots ∆Keff.  Once again it may be seen that the net

section coefficient decreases the compliance between the models.
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Figure 7-6: ∆Kapp for both finite element and analytical models.

(Analytical results do not include a finite width correction.)
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(Finite width correction included in analytical models.)
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The increase in error caused by including the net section coefficient is difficult to explain.

One reason may be that the increase in net section stress is not realized until the full panel

width is cracked and a crack has entered the edge web.  The edge web might be providing

sufficient restraint to reduce the effects of increased net section stresses.  This uncertainty

should be investigated further, but the true test of the models is their ability to predict the

experiments.

As will be seen in the next chapter, experimental comparisons support neglecting the finite

width correction.  However, the net section correction for cracks in ship hulls will likely be

very close to unity for even long cracks.  For this reason, it could be used to add an

increased factor of safety to one’s predictions.
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8  Prediction Success with  Experimental Cases                                     

8.1 INTRODUCTION

Previously it has been shown that the analytical model can readily be used to obtain the

same results as the finite element model.  This fact was taken advantage of in refining the

analysis to produce better results.  For example, instead of re-running a complete set of F.E.

analyses with a different residual stress field the analytical model was used with the new

residual stress field input.  The result was then obtained in three minutes as opposed to

several days of running F.E. analyses and J value interpolation.

Many variables affected the predictions made in the stiffened panels.  Correlation between

the analytical and finite element model alone required a number of investigations to be

made.  These investigations led to observations that were necessary to develop a cohesive

set of results under the same conditions.  The same procedure will be taken in the following

sections.

It is not enough to show the final results and expect an individual to reproduce them under

the same conditions without certain error.  Therefore, the focus of the predictions will be the

revisions made to achieve good results.  With this approach, one will learn the correct

procedure while avoiding the pitfalls that had occurred in developing the current final

results.

8.2 BASELINE SPECIMEN

Determining the applied stress ranges and values is the most significant source of error in

prediction accuracy.  Such difficulty was realized early on in baseline case predictions. The

initial predictions were made using the average of the three strain gages mounted at 76-cm.
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from the crack line (See Figure 3-7).  These predictions, shown in Figure 8-1, indicated that

the correct uniform stress should be higher and within the constant moment region of the

experiment configuration.  Good correlation with the experiments was obtained using a

uniform stress as indicated in Figure 3-8.
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Figure 8-1: Initial predictions made for baseline test specimen.

This location of stress monitoring was used for the remainder of the experiment predictions

to prevent bias in one prediction over another.  The prediction based on the final stress

measurement point is shown in Figure 8-2.



150

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500000 1000000 1500000
Number of Cycles

H
al

f C
ra

ck
 L

en
gt

h,
 a

 (m
et

er
s)

South
Crack
Growth

North
Crack
Growth

0.406 m,
824,046 cycles

Analytical
prediction, net
section coef. used

Analytical program prediction w/o net
section coefficient, ∆S = 37 MPa

0.383 m

0.406 m

0.492 m,
1,197,734

Prediction based on
discrete stress range
measurements

Figure 8-2: Final predictions made for baseline test specimen.

Note that use of a finite width correction dramatically skews the accuracy of the prediction

(The finite width correction in these analyses is made by using the net section coefficient).

The finite width correction is seen as the only contributor to the error, because the error

becomes exponentially larger as the crack becomes larger. If the error were due to improper

stress definition, the deviation from the experimental results would be consistent from the

initial crack lengths.

The excellent correlation in the baseline case demonstrated that a uniform stress could be

used to predict crack growth in a plate with large stress gradients.  Additional modeling was

done to try to directly use the measured stress gradient for predictions, but no improvement

in accuracy was attainable.  In fact, using the low stress values at the interior of the plate

predicted low initial growth rates while the stress values at the exterior of the plate predicted

the higher than observed final crack growth rates.  Therefore it is recommended that a

uniform stress be used to represent a stress gradient across a plate or stiffened plate.  The

location to measure this uniform stress should be near enough to the crack line that little
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increase in stress would be expected to be seen at the crack line.  In other words, the stress

should be taken as the stress acting on that cross section and not a true “remote stress” as the

analytical formulations theoretically apply to.

8.3 CASE 1: SOLID STIFFENERS

Many analyses are presented in Figure 8-3 to illustrate the effect of various modelling

assumptions.  Curves A and B illustrate that identical predictions will be obtained through

the finite element modeling technique and analytical modeling provided the same

assumptions are used.  Prediction A was made using a F.E. analysis without gap elements

and compressive residual stress of –70 MPa between weld lines.  A similar result was

obtained with the analytical model by matching the F.E.A. Kr (Curve 5 of Figure 7-3) and

using the net section coefficient (Finite width correction).  This curve is shown as Curve B.

Curve D was obtained by repeating the analysis used in Curve B with the exclusion of the

finite width correction.  This exclusion models any effects of displacement-controlled
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Figure 8-3: Predictions made for Case 1: Solid Stiffeners.
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loading more effectively. There is significantly better accuracy obtained by removing the net

section coefficient.  The unconservative growth rate exhibited in curve D is attributed to the

high compressive residual stresses and subsequent Kr used in the analysis.

Prediction C is the normal analytic model prediction.  It uses Faulkner’s method of

specifying the residual stress distribution with a triangular tensile region equal to 3.5 times

the plate thickness.  It is felt that this result would be very accurate had the plate been

uniformly stressed without the steep gradient as seen in Figure 3-8.  Low stresses in the

stiffeners were also reported, and these likely promoted slower crack growth than would be

present in a uniformly stressed panel.

Curve E is the result of finite element analyses made with gap elements and the assumption

that stiffeners were immediately severed.  In contrast, curve F represents the same analyses

with the exception that linear interpolation was used between an unbroken and broken

stiffener scenario.  All of the finite element analyses were performed with no variation in the

specified residual stress. A significant amount of labor is required to perform the analyses

under a different set of residual stress magnitudes.  As an alternative, this report

demonstrates that the simpler analytical model produces the same results as the F.E. model

without gap elements under the same loading conditions. Modifications in residual stress

magnitudes were then investigated through the analytical model, and it is certain that a finite

element model would produce identical predictions when performed under the same residual

stress modifications. Variances do occur when gap elements are used in the finite element

model, however.  For this reason, one may contrast the effect of using gap elements in

curves E and A, where gap elements represent the only variation in the F.E. modeling.

Of these analyses, prediction C provides the most reasonable prediction.  The authors

believe it is a reasonable prediction since it provides a conservative estimate without

involving complex analysis or the fine-tuning of parameters that are highly variable.  It is

the analytical model that incorporates a simple estimation of the residual stress and does not
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include the net section correction.  Had the finite element analysis without gap elements

(Curve A) been performed with lesser residual stress magnitudes, the F.E. prediction would

have been very similar.

The testing of this specimen ended with cracking in remote regions of the specimen.  The

remote cracking, in combination with the large stress gradient, support using this

conservative approach to estimate crack growth in situations where a larger structure

provides a more continuous force transfer into the full stiffened plate section.

The large differences among the various analyses indicates the high degree of sensitivity of

the analyses to the applied and residual stresses.  The recommended analysis technique

would be case C.  The fact that the other analyses give widely varying results, some

coincidentally in better agreement with the experimental data, should not be construed as

random fudging of assumptions in order to match the data.

Cases two and three produced more uniform testing results and were not affected by any

remote cracks and subsequent loss in applied stresses.  For these reasons, more accurate

modeling was justified and the stress gradient was directly accounted for.

8.4 CASES 2 AND 3: STIFFENED PANELS WITH CUTOUTS

Cases two and three of the experimental study gave very similar results.  Consequently,

refinement in the modeling could be achieved with greater certainty that the behavior could

be expected in real structures.  A progression of different analyses will be shown to arrive at

the recommended modeling technique.

The first predictions demonstrate the inadequacy of simple rule-of-thumb coefficients

applied to each CCT K result.  The CCT ∆K was used without a finite width correction to

produce the results shown in Figure 8-4.  Rolfe’s reduction factor (0.6 R.F. in Figure 8-4)
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for multiple stiffeners (see Equation 2-10) was applied to the same CCT ∆K and produced

highly unconservative predictions.

Note that this result using Rolfe's reduction factor would be the same for Case 1, and the

curve labelled 0.6 R.F. in Figure 8-4 could also be shown in Figure 8-3.  It can be seen that

the result would be very unconservative for Case 1 as well..
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Figure 8-4: Predictions based on simple CCT ∆K without finite width correction.

The next plot, Figure 8-5, demonstrates the differences obtained in finite element modeling.

By using gap elements in the finite element analysis, prediction H was made.  Excluding gap

elements and using simple addition of F.E. Kr and Kapp values resulted in curve I.  Both of

these prediction methods showed that the specified compressive residual stress was

retarding crack growth too much.  Therefore, the residual stress distribution was reduced by
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five percent.  This reduction brought compressive stress to a constant value of -66 MPa

between weld lines.  The effect of the residual stress reduction is seen in curve F.
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Figure 8-5: Predictions based on F.E. analyses with and without the use of gap elements.

The finite element predictions generally exhibited poor reproduction of the experimental

data shape for the specified residual stress fields and applied loading.  Finite element

modeling is only effective if valid input is specified, such as accurate applied stresses.  It

was hypothesized that the poor curve appearance was attributable to both low stresses seen

in the interior stiffeners and lack of restraint effects in the all the stiffeners. An investigation

was conducted on this speculation to improve the prediction curve appearance.  Since the

analytical model could duplicate the finite element model results well, it was used as a quick

means of determining a prediction that would be obtained had either model been used.

Therefore, prediction refinement for cases two and three was made using the analytical

model under different loading conditions.  These modifications were primarily investigated

in the analytical model but may be easily duplicated in finite element modeling.

The lack of stiffener restraint on crack growth was the first modification addressed.  It

directly addresses observations of Petershagen and Fricke, where they reported that the
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stiffeners with cutouts were ineffective in slowing down an approaching crack tip.  This

behavior was confirmed when observing the experiments involving stiffeners with cutouts

(ratholes or raised drain holes). F.E. analyses verified that there was virtually no decrease in

K as a crack approached a weld access hole.  The finite element method did, however,

predict decreasing K-values in the case of solid stiffeners.

A better understanding of crack retardation due to geometry may be obtained by taking a

closer look at the plate/stiffener interface.  It is intuitive that a rathole would hinge more

easily than a continuous stiffener. This is seen in Figure 8-6.  However, since the crack

propagates into the solid stiffener readily, the benefits of slowing down a running crack are

limited.

 

Figure 8-6: Effects of geometry on crack opening.

To accommodate the lack of stiffener restraint in panels with cutouts is relatively easy. All

that is necessary in the analytical model is to set the f1 coefficient to zero.  This will
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eliminate any contribution of the first effect discussed in Section 5.2 found on page 98.  In

the finite element model, the lack of stiffener restraint is duplicated by properly modeling

the geometry of the cutout (rathole or raised drain hole).

Modeling the low stress in the stiffeners was considered next.  An appropriate modification

that could be made to the models was reducing the force imparted by a severed stiffener.

Recall that the effect of a severed stiffener in the model is treated as a pair of splitting forces

on the crack line.  To reduce the magnitude of the splitting forces, the thickness of the

stiffener was decreased.  A smaller stiffener area translates to a smaller amount of force that

the stiffener is responsible for, and the modification effectively represents a stiffener with

lower stress than the plate. One can accurately model different stress levels in many

stiffeners by specifying a ratio of the stiffener stress to the plate stress.  In finite element

modeling, decreased stress levels are automatically incorporated if the complete load path in

the structure is included.

These changes were made to the analytical model and the results may be seen in Figure 8-7.

Curve E was made using an exterior stiffener stress ratio of 0.68 and an interior stress ratio

of 0.16.  These ratios were determined from strain gage readings from atop the stiffener

webs in the uncracked specimen.  By lowering the interior stiffener stress ratio to 0.13 even

better correlation was obtained, as seen in curve J.  Both curves E and J were generated with

the analytical model neglecting the f1 coefficient and the net section correction.  They

illustrate that the analytical model can be very precise if the true stress distribution is known.

Furthermore, shear lag effects in the stiffened panel may be accounted for by specifying

only the individual stiffener stress ratios and an approximation to the uniform plate stress.
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Figure 8-7: Refined analytical modeling.

The results of Figure 8-7 show much promise for the successful modeling of fatigue crack

growth in stiffened panels. Curve E doubled the prediction life estimate made by curve A,

the CCT ∆K prediction made assuming no stiffener or residual stress effects.  The

modifications to the analytical approach could easily be duplicated in finite element

modeling by changing the uniform stress applied to the stiffeners into a more realistic

applied stress or modeling the complete load path.  The uniform stress should still be applied

to the plate, however, because analyses that directly used the stress gradient underestimate

crack growth rates while the crack length was less than one stiffener spacing.

For comparison, the ∆Keff values for many of the predictions made for case 2 and 3 are

shown in Figure 8-8.  Data points in the figure represent extrapolated ∆Keff values from the

experimental data.
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Figure 8-8: ∆Keff for various prediction methods in cases 2 and 3.

Now that appropriate modeling techniques have been defined, it is important to look at some

precautions that should be made in such analyses. The first and most important precaution is

to use either a good estimate of the actual stress range or a slightly conservative estimate.

The stress range affects the final cycle count tremendously and if one wishes to obtain an

accurate or conservative measurement, due care should be exercised.  Secondly, analyzing

several starting crack lengths is essential—especially for situations where the initial crack

length may be affected by compressive residual stresses.  To illustrate, consider Figure 8-9.

Curve G was made using the actual starting crack length of 316-mm, where the crack was

theoretically located in a compressive residual stress zone.  This theoretical value of residual

stress exceeded the actual residual stress distribution and caused extremely low ∆Keff values

to be obtained.  Consequently, the prediction made gave an extremely high number of cycles

necessary to propagate the crack a short distance.  On the other hand, using an initial crack

length of 322-mm, in the exact same analysis, resulted in the prediction seen as curve C.
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Figure 8-9: Possible prediction variation for cracks growing out of initial residual stress
zone.

The wide range is not an error in modeling procedure.  Rather, it illustrates that the

variability in residual stress may cause limited success in small crack growth estimates.  A

small crack growth estimate in the course of this study means a crack less than one stiffener

spacing in length. To alleviate any unconservative estimates for small cracks, one could set

the compressive residual stress in the first stiffener span to zero.

8.5 CASE 4: STIFFENERS WITH RATHOLE AND MASTER BUTT WELD

Case four showed accelerated crack growth more typical of a plate specimen than a stiffened

panel.  Therefore, predictions were appropriately made by using variations on the simple

CCT stress intensity factor without accounting for any residual stress interaction.

The resulting predictions may be seen in Figure 8-10.  Curve A was made using a finite

width correction factor and a stress range as determined in the same fashion as developed in
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section 8.1.  Instead of using the net section correction to account for specimen finite width,

a simple secant formula was used:

 





=

b
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fw 2
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π

where 2a is the half-crack width and 2b is the total plate width taken as the plate width plus

the 30.5-cm edge webs.
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Figure 8-10: Case four predictions.

This finite width correction was used for both its simplicity and because the net section

coefficient did not perform well under the current testing configuration.  The net section

coefficient yielded higher amplification than was probable for shorter crack lengths in the

plate.  The secant formula, however, exhibits a delayed amplification until the majority of

the plate is cracked. This behavior better suited the observations in the experiment.  It should

be noted that the secant formula does not usually include the width of the edge webs, but it

certainly is not appropriate for a plate with stiffened edges.  Therefore, the inclusion of the
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edge web plates in the total plate distance was a compromise between a theoretical

application and real world observations.

Curve B represents the same analysis without the finite width correction.  Finally, curve D

was made using the suggested weight function of Petershagen and Fricke to account for

stiffener separation:

tb
Atb

f
s

ss
s 2

2 +
=                                                  Eqn.  8-1

where bs is the distance between stiffeners, t is the plate thickness, and As is the cross

sectional area of the stiffener.  This coefficient was applied to the CCT K solution in the

following manner:

( )affK nwsI πσ=                                            Eqn.  8-2

In making these predictions, it was quite noticeable that the actual fatigue data could be

better mapped by deterring from the stress range definition determined in section 8.1.

Iterating on the stress range resulted in an excellent data fit for ∆σ = 35 MPa.  This

prediction, curve C, includes the finite width correction used in prediction A.  Trial and error

is not an option for practice, however, and therefore a reasonable expectation should fall in

the range of curves A, B and D.  For case four it is recommended that the CCT K should be

used in conjunction with the secant finite width correction.

8.6 CASE 2A: MULTIPLE SITE DAMAGE IN STIFFENERS WITH RATHOLES

Case 2a represented a stiffened panel with cracks initiating at weld access holes (ratholes).

A complete description of the experiment was made in Section 4.6 on page 92.  The

objective was to simulate four cracks at adjacent stiffeners in a wider structure than the test

specimen.  The configuration of the test specimen forced several compromises.  The

stiffener proximity to the edge webs and the large stress gradient across the panel were
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problems.  The results of the test, therefore, are of limited use in developing a refined model

that would work well in realistic applications.

A simplified and conservative analysis was promoted based on the information from the

test.  The prediction approach was similar to that of case four, where the CCT K was applied

and modifying coefficients investigated.  The resulting model is developed in two stages:

Stage one is shown in Figure 8-11 and stage two in Figure 8-12.

Stage one involved making six predictions based on the CCT K equation. First, a prediction

curve is made for each crack tip except those propagating away from the exterior stiffeners.

A new crack length definition is used in the CCT K formula:

cK mc πσ=                                               Eqn.  8-3

where c is the distance of the crack tip from the stiffener centerline.

This crack length was defined because sometimes the crack length would not be symmetric

about a stiffener, and best results were found if this definition was used.  For the crack tips

propagating away from the exterior stiffeners, no K was determined directly.  Rather, the

incremental crack growth was defined as twice that of the crack tip on the interior side of the

same stiffener. The stress values were taken from the values along each respective stiffener

line.  For example, for the interior stiffeners the stress was determined by estimating the

stress at the stiffener line and approximately 20-cm from the crack line in the uncracked

body.  The results of this first phase may be seen in Figure 8-11.
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Figure 8-11: Stage one of prediction for case 2a.
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Figure 8-12: Beginning of stage two of prediction for case 2a.
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The prediction of stage one generates crack lengths that overlap rather than grow together.

By plotting the predictions, we may visualize number of cycles necessary for the cracks to

merge.  This cycle count is determined by a stage one prediction.  Next, the crack is treated

as a continuous crack similar to those modeled in the previous specimens. The continuous

crack may be seen in Figure 8-12, where the stage one predictions have been cut off to

represent merged crack tips.  Any prediction made assuming the crack is continuous

comprises a stage two prediction.  Since the specimen width prevented continued growth of

the crack, no stage two prediction was made.

The approach may be considered crude but offers a conservative model for assessment in

light of the uncertainty in the test results.  Estimating the extreme stiffener crack tips as

twice the interior half provides a safe yet feasible behavior in the configuration.

Undoubtedly better models could be created if multiple, wider specimens were involved in

the experiment. However, loading and financial limitations make such a study impractical.


